SOME ASPECTS OF CHEMICAL AND BIOLOGICAL DYNAMICS IN RELATION TO TIME EVOLVING STRUCTURES

Robin Hochstrasser

University of Pennsylvania

Fantasy?

- The ideal approach in structural biology would obtain atomic scale structures during the course of biochemical processes in functional environments such as solutions and membranes.
- Is this feasible? In crystals, yes (Moffat, Anfinud) otherwise, not yet.
- What is the answer? Develop many approaches to determining evolution of structural features, each with its special strength.
- What time scales? Ultrafast? Ultraslow? All are needed

"SOME ASPECTS OF CHEMICAL AND BIOLOGICAL DYNAMICS IN RELATION TO TIME EVOLVING STRUCTURES...."

MOST CHEMISTRY AND BIOLOGY
TAKES PLACE IN LIQUID SOLUTIONS
- OFTEN IN WATER.

THEREFORE IT IS IMPORTANT TO TRACK
NUCLEAR MOTIONS OF COMPLEX MOLECULE
IN SOLUTIONS.

Are all atomic motions important in biology?

Which motions influence the operation of the clock?

BUT IN OTHER CASES:

Quartz watch

NEED TO COMBINE DIFFRACTION AND SPECTROSCOPY

Methods of triggering biochemical processes

- Photolysis: ultrafast, applicable to photobiology or phototriggerable systems, natural or synthetic.
- Rapid mixing: microsecond processes; very general. Most biochemical kinetics come from this source.
- Temperature jumps: timescales longer than ca. 50 ps
- Optically induced pH Jumps: time scales longer than 50 ps
- High pressure jumps: ms time scale diffraction

EXAMPLES OF ULTRAFAST TRIGGERS OF CONFORMATIONAL DYNAMICS

TRIGGERING BIMOLECULAR REACTIONS IN LIQUIDS

MEASUREMENT OF SOLUTION PHASE STRUCTURAL CHANGES

- RADIAL DISTRIBUTION RESPONSES IN PERTURBED LIQUIDS
- CONFORMATIONAL DYNAMICS WITH ULTRAFAST TRIGGERS
- BIMOLECULAR REACTIONS IN SOLUTIONS
- COMBINE X-RAY PULSE PROBING WITH OPTIMIZED (MULTIDIMENSIONAL) SPECTROSCOPIES.

MULTIPLE-PULSE COHERENT METHODS, SUCH AS 2D AND 3D INFRARED SPECTROSCOPY, PROVIDE DYNAMICS, ENERGETICS AND STRUCTURAL EVOLUTION – COMPLEMENTS TO X-RAY PULSE PROBES

Structural constraints from 2D IR

• Distance: Models for mixed mode anharmonicities yield:

 $1/R^3$

3 to 9 A scale.

• Angles: Model independent, each cross peak may yield,

$$P_1$$
 and P_2

• Energy transport:

$$\sim 1/R^6$$

Isotopic replacement selects required structural components

